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Abstract. Accurate pose measurements are crucial for the reliability of the kinematic 
calibration and performance evaluation of a robotic manipulator. Spherical coordinate 
measurement systems such as laser trackers and total stations are commonly used to collect 
sets of 3D points from which position and orientation of a moving coordinate frame attached to 
the end-effector in relation to a reference coordinate frame are calculated. Estimating the 
uncertainty of this specific measurement task is necessary to provide traceability to these 
measurements. In this paper we propose combing measurements of calibrated artefacts with 
Monte Carlo simulations to estimate this task-specific measurement uncertainty. The 
application of this method has been demonstrated for the performance evaluation of a Stewart 
Platform using a robotic total station. Expanded uncertainties between 0.40 mm and 0.63 mm 
have been estimated for position. Expanded uncertainty was 0.10º for all orientation results. 

Keywords: robot calibration, pose accuracy, total station, laser tracker, measurement 
uncertainty 

1 .   Introduction 
The pose of a robotic manipulator is the position and orientation of its end-effector after a given 
displacement. During kinematic calibration or performance evaluation processes several poses are 
generated with the robot and the actual position and orientation of its end-effector assessed with 
appropriate measurement equipment. Spherical coordinate measurement systems such as laser trackers 
and high accuracy total stations are used to collect 3D points from which the pose is calculated. In 
order to provide metrological traceability it is necessary to state the uncertainty of this specific 
measurement task. 

Due to the complexity of measurements with coordinate measurement systems, the task-specific 
uncertainty estimation is typically addressed by numerical or experimental methods. The German 
National Metrology Laboratory PTB proposed in the 1990’s a solution for the numerical estimation of 
task-specific measurements with cartesian coordinate measurement machines know as “Virtual-
CMM” which is available in commercial software [1]. A version for laser trackers is currently under 
development in the United Kingdom [2]. A limitation of this method is that several sources of 
uncertainty related to factors such as equipment geometry, probing and thermal expansion have to be 
quantified through a sophisticated calibration. An alternative is the experimental uncertainty 
evaluation described in ISO 15530-3 [3]. This method is based on repeated measurements of a 
calibrated workpiece. The calibrated workpiece and the condition during these reference 
measurements have to be sufficiently similar to the measurement process under evaluation. This 
requirement is not easily fulfilled for the specific measurement problem discussed in this paper.  



 
 
 

 
 
 

We therefore propose a strategy that combines measurements of simple calibrated artefacts with 
Monte Carlo simulations. This method is limited to applications in which the pose is assessed through 
a set of 3D point measurements. 

2.  Experimental-numerical method 
The proposed procedure to estimate the uncertainty of pose measurements is illustrated in the flow 
chart in Figure 1. The first step is to define a mathematical model that relates the pose of the end 
effector to sets of 3D points measured to define the reference base frame b and the moving frame p. 
The remaining steps will be outlined in Sections 2.1, 2.2 and 2.3. 

 
Figure 1. Uncertainty estimation procedure. 

2.1.  Standard uncertainty of the coordinates of the base frame points 
In this step the standard uncertainties of the coordinates of the points that define the stationary base 
frame b are estimated experimentally. We propose to evaluate these uncertainties through a set of 
measurements of a calibrated 2D artefact. If a spherical mounted reflector (SMR) is used, the 
reference points of this artefact would typically be materialized through kinematic nests. It is 
necessary for the artifact to have some more points than the number of points used to define frame b 
and that the positions of the points are similar to the distribution of the equivalent points on the robot. 

The measurement end evaluation sequence is the following:  
1) Place 2D artefact in a position and orientation in relation to the measurement system 

comparable to the position and orientation of the points that define frame b in relation to 
the measurement system during the actual measurement on the robot; 

2) Measure the points that define the coordinate frame of the artefact and calculate frame; 
3) Measure coordinates of all m points of the artefact n times in respect to the artefact frame. 

We propose a minimum of n = 3 measurements; 
4) Calculate measurement errors of the coordinates for all j = {1…m n} points according to 

Equation 1. If temperature of the artefact is monitored, actual values may be corrected to 
20ºC; 
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5) Calculate mean and standard deviation values of 𝑒!, 𝑒! and 𝑒!; 
6) Evaluate standard uncertainties 𝑢!, 𝑢! and 𝑢! according to Equation 2. We opted to treat 

the uncorrected bias as a standard uncertainty, as recommended in [4]. 
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where, 𝑢!: standard uncertainty of coordinate i; 𝑢!"#: maximum standard uncertainty of the calibrated 
coordinate values of the standard artefact;  𝑢!"#,!: variability of coordinate i quantified as the standard 
deviation of the measurement errors of coordinates i; 𝑢!,!: standard uncertainty due to the thermal 
expansion of the 2D artefact; 𝑏!: bias (average value of 𝑒!). 

The standard uncertainty due to thermal expansion is calculated according to Equation 3. A 
uniform probability distribution is assumed. 
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where, 𝐿!"#: maximum value of coordinate i; α: thermal expansion coefficient of the material of the 
2D artefact; ΔT: maximum absolute difference between temperature of the artefact and 20ºC or 
expanded uncertainty of the temperature measurement if temperature is corrected.  

2.2.  Standard uncertainty of the coordinates of the moving frame points 
The uncertainties of the coordinates of the points that define moving frame p are estimated 
experimentally through a set of measurements of a calibrated length standard. Again, the points that 
define the length of the artefact would typically be materialized through kinematic nests. The standard 
should have a length that is similar to the largest distance between the points that define both frames of 
the robot considering all measured poses. Also, the positions of the bar in relation to the measurement 
system during the experiment should to be comparable to the condition during the measurements on 
the robot. 

The length standard is measured in m different positions/orientations. These positions/orientations 
have to be carefully chosen in order to assure that the measurements are sensible to the main 
geometrical error components of the measurement system that would affect the actual measurements 
on the robot. We propose the measurement of at least six 1D positions (two in each axis x, y, z), six 
2D diagonals (two in each plane xy, yz, zx) and two 3D diagonals, i.e. at least 14 
positions/orientations in total, as depicted in Figure 2. 

 
Figure 2: Positions for lenght standard measurements.  

 
The measurement end evaluation sequence is the following: 

1) Measure the length artefact in all m positions n times. We propose a minimum of n = 3 
repeated measurements; 

2) Calculate length measurement errors according to Equation 4. If temperature of the artefact 
is monitored, the actual values should be corrected to 20ºC; 

 (4) 
3) Calculate mean and standard deviation values of e_L;  
4) Evaluate standard uncertainties 𝑢!, 𝑢! and 𝑢! according to Equation 2. 

 (5) 
where, 𝑢!: standard uncertainty of coordinate i; 𝑢!"#: maximum standard uncertainty of the calibrated 
length of the standard;  𝑢!"#: variability measured as the standard deviation of the measurement 
errors; 𝑢!: standard uncertainty due to the thermal expansion of the length standard; 𝑏!: bias (average 
of 𝑒!,! values. 

The standard uncertainty due to thermal expansion is calculated according to Equation 6. A 
uniform probability distribution is assumed. 
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where, L: length of the standard; α: thermal expansion coefficient of the material of the length 
standard; ΔT: maximum absolute difference between temperature of the artefact and 20ºC or expanded 
uncertainty of the temperature measurement if temperature is corrected.  
 

2.3.  Combined and expanded uncertainty of pose values 
Standard uncertainties of the coordinates of the points that define frames b and p are used as standard 
deviations of normal probability distributions to be propagated in the Monte Carlo simulations. If the 
uncertainty estimation is performed a priori, nominal coordinate values of the robot measurements can 
be used as mean values of the distributions. If it is an a posteriori evaluation, mean values should be 
the average indications. 

A sufficiently large number M of Monte Carlo trials should be performed. We use M=1e6, as 
recommended by the Supplement 1 to the GUM [4]. Values for the expanded uncertainties should only 
be stated if assumption of normal distribution of the output values is acceptable. 

3.  Uncertainty of pose measurements for the performance evaluation of a Stewart 
Platform 
The measurement problem to be discussed in this section is the determination of pose values of a 
Stewart Platform with a robotic total station. The purpose of these measurements is the evaluation of 
the performance of the equipment. Our Stewart Platform is depicted in Figure 3-a. A Stewart Platform 
is a 6-DoF robotic manipulator. The pose of the upper moving platform in relation to the stationary 
base is changed by appropriately varying the lengths of six legs. The legs of our equipment are lead 
screw actuators driven by servos. The legs are attached to the base and to the moving platform by 
means of universal joints.  

 
Figure 3: Stewart Platform. 

Frames b and p are defined by sets of three conical nests that are designed for 38.1 mm diameter 
SMR (Figure 3-b and c). The three points that define the base and the platform are denoted 𝑏! and 𝑝!, 
respectively. 

Our total station is a Leica TS 12, manufactured in 2015. The precision (repeatability), according to 
ISO 17123-4, is 1.0 mm + 1.5 ppm for length measurement and 7” for angle measurement. Resolution 
is 0.1 mm. 

3.1.  Mathematical model 
Coordinate frames b and p are defined by the classic 3-2-1 method, i.e., points 1, 3 and 3 define the 
primary reference (the xy-plane), points 1 and 2 points define the secondary reference (the x-axis) and  
point 1 define the origin. Mathematically this definition can be described as follows. 

Let 𝑏! and 𝑝! be 3D coordinates in mm described in an arbitrary frame “0”. 
 (7) 
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The unit vectors and the rotation matrix of frame b are: 
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The unit vectors and the rotation matrix of frame p are: 

 
(13) 
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Frame origins are shifted from point 1 to locate them approximately at the center of the base and 
the moving platform: 

(17) (18) 
A given platform pose is described through vector 𝐨𝐩𝐛 (origin of the platform frame in respect to the 

base frame) and rotation matrix 𝐑𝐩𝐛 : 

  (19)   (20) 
 

In this work we adopt the ZYX (roll, pitch, yaw) angle convention. Let α, β and γ be the rotations 
of the platform frame in respect to the base frame about axes x, y and z, respectively. These angles are 
calculated from the rotation matrix using the Atan2 function: 

 (21)  (22)  (23) 

3.2.  Experimental estimation of the standard uncertainty of the 3D coordinates of points 𝐛𝐢 
We constructed a simple 2D artefact from aluminum profiles (Figure 4-left). The artefact features six 
conical nests for 38.1 mm SMR as probing elements and was calibrated on a coordinate measuring 
machine. Points 1, 2 and 3 define the xy-plane, x-axis points from point 1 to point 2 and point 1 
defines the origin. Nominal distance between points 1 and 2 is 430 mm and nominal distance between 
points 1 and 4 is 605 mm.  

During the measurements, position and orientation of the total station in relation to the artefact 
(Figure 4-right) was comparable to the pose measurements on the Stewart Platform. The position of 
each nest was measured three times. Temperature varied between 19.6ºC and 19.7ºC. The expanded 
uncertainty of the temperature measurement was estimated to be U = 0.3ºC. We thus considered a 
maximum deviation from 20ºC of ΔT=0.7ºC. Thermal expansion coefficient is 23e-6 1/K. 
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Figure 4: 2D artefact.  

Figure 5 presents the coordinate measurement errors calculated according to Equation 1. 
Coordinates of point 1, as well as y and z coordinates of point 2 and z coordinate of point 3 were not 
included in the analysis, since these coordinates define the reference frame of the artefact. The dashed 
blue lines stand for the average errors (bias). 

 
Figure 5: Coordinate measurement errors assessed with the 2D artefact. 

 The values of the uncertainty sources and the combined uncertainties for the coordinates of points 
𝑏! are listed in Table 1. 
 

Table 1: Uncertainty sources and combined uncertainty of coordinates of points 𝐛𝐢.  
Coordinate 𝑢!"# [mm]  𝑢! [mm]  𝑢!"# [mm]  b [mm]  𝑢! [mm]  

x 
0.005 0.006 

0.066 0.002 0.066 
y 0.088 0.134 0.110 
z 0.047 -0.093 0.105 

 

3.3.  Experimental estimation of the standard uncertainty of the 3D coordinates of points 𝐩𝐢 
The length standard was also constructed from an aluminum profile. The reference length of 1120 mm 
is defined by two conical nests and was calibrated using a CMM as well.  

The length standard was measured three times in each position shown in Figure 2. Measurement of 
positions “Z1” and “XYZ2” are depicted in Figure 6-a and b, respectively. Temperature varied 
between 19.8ºC e 20.0ºC. By taking the uncertainty of the temperature values into account, ΔT = 0.5ºC 
was adopted. 

 
Figure 6. Measurement of the length standard. 
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Length measurement errors calculated according to Equation 4 are plotted in Figure 7 and values of 
the uncertainty sources and the combined uncertainty presented in Table 1. 

 
Figure 7: Length measurement errors.  

Table 2: Uncertainty sources and combined uncertainty of coordinates of points 𝐩𝐢.  
Coordinate 𝑢!"# [mm] 𝑢! [mm] 𝑢!"# [mm] b [mm] 𝑢! [mm] 

x, y, z 0.005 0.008 0.148 0.184 0.236 

3.4.  Simulation-based estimation of the expanded uncertainty of the pose measurement 
Within the scope of the performance evaluation, each one of the 13 poses defined in Table 3 was 
controlled. The expanded uncertainty was estimated for each measurement result by means of Monte 
Carlo Simulations. The mathematical model and the Monte Carlo algorithm were implemented in R 
programming language. 
 

Table 3: Nominal poses for the performance evaluation of the Stewart Platform. 
 Pose nr. 

1 2 3 4 5 6 7 8 9 10 11 12 13 
x [mm] -120 -120 0 120 120 0 0 0 0 0 0 0 0 
y [mm] 120 -120 0 120 -120 0 0 0 0 0 0 0 0 
z [mm] 1235 1235 1175 1115 1115 0 0 0 0 0 0 0 0 
α  [º] 0 0 0 0 0 -5 5 0 0 0 0 -5 5 
β  [º] 0 0 0 0 0 0 0 -5 5 0 0 -5 5 
γ  [º] 0 0 0 0 0 0 0 0 0 -5 5 -5 5 

 
As an example, Figure 8 illustrates the frequency distributions of the simulation outputs for 

coordinate x and angle α of pose 13. The solid red lines are the mean values and the dashed blue lines 
the limits of uncertainty (k = 2). The normality of the output values was confirmed by means of a 
Shapiro-Wilk test. The distribution for the other coordinates and angles and the remaining poses is 
similar.  

 
 

 
Figure 8. Frequency distribution of coordinate x and angle α .  

The expanded uncertainties (k = 2) for the 13 poses are listed in  
Table 4.  
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Table 4: Expanded uncertainties for the 13 pose measurements.  
 Pose nr. 

1 2 3 4 5 6 7 8 9 10 11 12 13 
U(x) [mm] 0.52 0.53 0.51 0.48 0.50 0.51 0.51 0.51 0.51 0.50 0.52 0.50 0.52 
U(y) [mm] 0.63 0.63 0.61 0.60 0.60 0.61 0.61 0.61 0.61 0.62 0.60 0.62 0.60 
U(z) [mm] 0.40 0.40 0.40 0.41 0.41 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

U(α) [º] 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
U(β) [º] 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
U(γ) [º] 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

 

4.  Discussion and conclusions 
The method proposed in this paper is limited to circumstances in which pose is calculated from 3D 
points. Nonetheless, it is not limited to a specific coordinate measurement system or to a specific 
robotic manipulator. However, the design of the artefacts should always take the requirement of 
similarity to the actual measurement process into account. Also, the uncertainties related to the 
calibration of the artefact should be reduced if more accurate systems such as laser trackers are under 
evaluation. This can be done, for instance, by constructing artefacts from a material with lower 
thermal expansion coefficient. 

It is also possible to use the results of the length measurements to estimate the uncertainty of the 
coordinates of frame b, as an alternative to using the 2D-artifact. However, in most cases, this will 
lead to an overestimation of the uncertainty. It is also possible to completely eliminate the 
experimental steps by using the specification for the maximum permissible 3D length measurement 
error or 3D point uncertainty as informed by the manufacturer of the measurement system. 
Nonetheless, this will probably lead to an even larger overestimation. 

As mentioned in Section 2.1, we opted to treat the uncorrected bias as a standard uncertainty, 
against the GUM recommendation to always correct systematic errors. In our case, it is not possible to 
use the bias quantified in the experiments to correct individual pose values, since there is no functional 
relationship between both. The estimated bias should therefore be interpreted as an estimate for the 
average systematic coordinate measurement error. 

The values for estimated uncertainty seem plausible. Nonetheless it was not yet possible for us to 
experimentally validate these values due to the lack of an appropriate reference measurement system. 
Efforts are being undertaken so that we have access to a laser tracker in the near future. 
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